\qquad
Date: \qquad

Exponential (Growth/Decay) Feb 7

Exponential Function Form

1) Change the following percent to decimals:
a. $33 \%=$ \qquad d. $1.5 \%=$ \qquad
b. $15 \%=$ \qquad e. $100 \%=$ \qquad
c. $50 \%=$
f. $25 \%=$ \qquad
2) Alice's height doubles each time she eats an ounce of cake (increases by 100\%).
a) Express the rate (r) of 100% as a decimal $=$ \qquad
b) Find the Growth Factor ($\mathbf{b}=\mathbf{1}+\operatorname{rate}(\mathbf{r})$) = \qquad
3) Alice's height is cut in half each time she drinks an ounce from the bottle (decreases by 50\%).
a) Express the rate (r) of 50% as a decimal $=$ \qquad
b) Find the Decay Factor (b=1 - rate (\mathbf{r})) = \qquad
4) Every day you forget a third (33\%) of the material you learn in Algebra.
a) Express the rate (r) of 33% as a decimal $=$ \qquad
b) Find the Growth
/Decay Factor (b) = \qquad
5) Rabbits' populations increase by 25% each year. Find the rate of change.
a) Express the rate (r) of 25% as a decimal $=$ \qquad
b) Find the Growth/Decay Factor (b) = \qquad
6) The population of rabbits increases at a rate of 25% per year. You have counted 40 rabbits in your uncle's farm.
a) Determine the growth or decay factor (b), the rate (r), and the initial count (a).
$\mathrm{a}=$ \qquad
\qquad $b=(1+r)=$ \qquad
b) Write a function that models the change in the rabbits' population for any year.
c) Graph the function and estimate the number of years until the rabbits' population will multiply 3 times.

7) The world population of tigers in 2000 was approximately 3,125 . The annual rate of decrease was about 15% per year.
a) Determine:

$$
\mathrm{a}=\square \quad \text { rate }=\quad \mathrm{b}=
$$

b) Do we have a growth or decay factor? Identify it.
c) Suppose the rate of decrease continues to be 12% per year. Write a function to model the world population of tigers for any given year.
c) Graph the function. Estimate the number of years until the population will reduce approximately one fifth.

